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ABSTRACT 
In recent years scientists and engineers are facing several problems in the biomedical field. However Digital 

Signal Processing is solving many of those problems easily and effectively. The signal processing of ECG is 

very useful in detecting selected arrhythmia conditions from a patient’s electrocardiograph (ECG) signals. In this 

paper we performed analysis of noisy ECG by filtering of 50 Hz power line interference using an adaptive LMS 

notch filter. This is very meaningful in the measurement of biomedical events, particularly when the recorded 

ECG signal is very weak. The basic ECG has the frequency range from 5 Hz to 100 Hz. It becomes difficult for 

the Specialist to diagnose the diseases if the artifacts are present in the ECG signal. Methods of noise reduction 

have decisive influence on performance of all electro-cardio-graphic (ECG) signal processing systems. After 

removing 50/60 Hz powerline interference, the ECG is lowpass filtered in a digital FIR filter. We designed a 

Filter Bank to separate frequency ranges of ECG signal to enhance the occurrences QRS complexes. Later the 

positions of R-peaks are identified and shown plotted. The result shows the ECG signal before filtering and after 

filtering with their frequency spectrums which clearly indicates the reduction of the power line interference in 

the ECG signal and a filtered ECG with identified R-peaks. 

Keywords – ECG, Arrhythmia, QRS, Filter Bank, Adaptive LMS filter, Downsampling, spectrum, MATLAB. 

I. INTRODUCTION 
The recording of bioelectrical potentials 

generated on the surface of the body by the heart is 

called ECG (Electro-Cardio-Gram). ECG is an 

important tool to know about the functional and 

structural status of the heart. In healthcare, the 

diagnosis of cardiac diseases accurately through an 

automated method of analysis of ECG signals is 

crucial, especially for real-time processing. The heart 

rate signal detects the QRS wave of the ECG and 

calculates inter-beat intervals [1]. The classification 

of cardiac rhythms is based on the detection of the 

different types of arrhythmia from the ECG 

waveforms. Normally the ECG is corrupted by 

various noises such as 50/60 Hz power line signals, 

the baseline drift caused by patient breathing, bad 

electrodes and improper electrode location. Due to 

these types of noises detection of QRS complexes 

becomes difficult or may be false one.  Thus, some 

studies have compared the robust performance of 

different algorithms for QRS wave detection. 

Trahanias used the mathematical morphology of the 

QRS complex to detect heart rates. Chang used the 

ensemble empirical model decomposition to reduce 

noises in arrhythmia ECGs. Fan used approximate 

entropy (ApEn) and Lempel-Ziv complexity as a 

nonlinear quantification to measure the depth of 

anaesthesia. Several researchers have extracted the 

features of ECG waveforms to detect the QRS 

complexes based on the arrhythmia database.          

Dr. Li, proposed the wavelet transforms method for 

detecting the QRS complex from ECG having high P 

or T waves, noise, and baseline drift. Yeh and Wang 

proposed the difference operation method to detect 

the QRS complex waves. Mehta and Lingayat used 

the support vector machine (SVM) method to detect 

the QRS complexes from a 12-leads ECG [2]. They 

also used the K-mean algorithm for the detection of 

QRS complexes in ECG signals. In these studies, the 

normal sinus ECG signal added different noise types 

and energy was used to evaluate the performance of 

these algorithms. 

Arrhythmia can be defined as either an 

irregular single heartbeat or a group of heartbeats. 

Some classification techniques are based on the ECG 

beat-by-beat classification with each beat being 

classified into several different arrhythmic beat types. 

These include classification based on artificial neural 

networks [3], fuzzy neural networks, Hermite 

functions combined with self-organizing maps, and 

wavelet analysis combined with radial basis function 

neural networks. In these methods, the ECG 

waveform of each beat was picked up and different 

features were extracted to classify the arrhythmic 

types. Tsipouras used the RR-interval signal to 

classify certain types of arrhythmia based on a group 

of heartbeats.  

In this paper we proposed an approach in 

which the ECG signal is processed with adaptive 

filter and a lowpass to remove noise due to powerline 

interference, baseline drift, motion artifacts and other 
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noise sources filter. Later a Filter Bank and a simple 

QRS detection algorithm are used to detect R-peaks. 

 

II. ECG BASICS 
The human heart is a cone-shaped muscular 

pump located in the mediastinal cavity of the thorax 

between the lungs and beneath the sternum [4].  In a 

healthy heart a sequence of electrical impulses is 

generated by the natural pacemaker in the right 

atrium, which is called sinoatrial node (SA). This 

impulse sequence then flows down natural 

conduction pathways between the atria to the 

atrioventricular node and from there to both 

ventricles. Atria and ventricles contract coordinately 

as the impulses spread through the natural conduction 

paths in an orderly fashion. The flow of electrical 

impulses creates unique deflections in the ECG that 

gives the information about heart function and health. 

Fig.1 shows the cross section of human heart and the 

ECG signal generated from the various parts of the 

heart.  

 
Fig. 1 cross section of human heart and the ECG 

signal 

 

A typical ECG tracing of a single beat are 

traditionally recognized and labeled as a P wave, a 

QRS complex, a T wave, and a U wave [5]. The peak 

labeled P corresponds to the initial electrical pulse 

triggering the heart’s contraction. The interval from P 

to Q corresponds to the spreading of the 

depolarization across the smaller chambers of the 

heart (the atria—singular atrium), and is typically 

very small because the atria are only a small fraction 

of the heart. The QRS complex, the great big feature 

in any ECG trace, shows where the ventricles 

contract. These are the largest, lower chambers of the 

heart, explaining why this feature is bigger than the P 

feature for the atria. The T wave shows where the 

ventricles re-polarize in preparation for the next 

heartbeat to occur and where the muscles are relaxing 

after contraction. We can calculate the rate by 

looking at several beats. With the help of ECG, 

doctors and other trained personnel can analyse ECG 

tracing and find out the reasons for functional and 

structural disorders of the heart such as abnormal 

speeding, slowing, irregular rhythms, injury to 

muscle tissue (angina), and death of muscle tissue 

(myocardial infarction) etc. The length of intervals 

gives the information about the conduction lengths of 

the flow of electrical impulses from SA node. If an 

impulse is following its normal pathway then the 

length of an interval is normal. If an impulse has 

taken a longer route or has been slowed then the 

interval is long. If an impulse has taken a shorter 

route or has been speeded up then the interval is 

short. When the electrical impulse did not rise 

normally or was blocked at that part of the heart QRS 

complex becomes absent. The P-wave will be absent 

when there is a lack of normal depolarization of the 

atria. If QRS complex is absent after a normal P wave 

then it indicates that the electrical impulse was 

blocked before it reaches the ventricles. When the 

heart tissue is dead or injured, the impulses will 

spread abnormally through the muscle tissue and 

produces abnormally shaped complexes in ECG. 

Such situation is called as myocardial infarction. 

Metabolic abnormalities and various medicines may 

also change electrical signal pattern of ECG. 

 

III. METHOD 
In this paper the ECG signal is analysed 

based on frequency content. The power spectrum of 

ECG signal may extend up to 100 Hz with QRS 

complex concentrating up to 50 Hz. Depending upon 

the sharpness of the morphology of Q, R and S waves 

the frequency content may extend even beyond 50 Hz 

with considerable magnitude. In general, the energy 

of P and T waves will be up to 10 Hz significantly. 

Hence the best way is to detect heartbeats is to 

analyze ECG signal based on different sub-bands of 

the ECG using FIR filters in the form of a filter bank 

[6], instead of considering just the output of one filter 

which maximizes SNR of the QRS [7]. 

Fig.2 shows the block diagram of our 

method used for analyzing ECG signal.  

 

 

 

 

 

 

 

 

 

 

Fig.2 Block diagram of the proposed method 
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In order to remove 50 Hz (60 Hz) powerline 

interference an adaptive LMS filter is used [8]. The 

adaptive filter using LMS algorithm [9][10] is shown 

in Fig.3. The adaptive filter would take input both 

from the patient and from the power supply directly 

and would thus be able to track the actual frequency 

of the noise as it fluctuates. Such an adaptive 

technique generally allows for a filter with a smaller 

rejection range, which means, in our case, that the 

quality of the output signal is more accurate for 

medical diagnoses. The idea behind the block 

diagram is that a variable filter extracts an estimate of 

the desired signal. 

  

 

 

 

 

 

 

 

 

 

 

Fig.4 Block diagram of adaptive LMS filter 

 

The input signal is the sum of a desired 

signal d(n) and interfering noise v(n). The adaptive 

filter is FIR structure [11] defined with filter 

coefficients as: 
T

nnnn pWWWW )](..........),1(),0([                        (1) 

 

The error signal is obtained from the difference 

between the desired and the estimated signal as: 

)()()( ndndne


                                                     (2) 

 

The adaptive filter estimates the desired signal by 

convolving the input signal with the impulse 

response. In vector notation this is expressed as: 

)()( nXWnd n 


                                                    (3) 

 

Where X(n) is an input signal vector and given by: 
TpnxnxnxnX )](..........),1(),([)(                    (4) 

Moreover, the variable filter updates the filter 

coefficients at every time instant according to the 

equation: 

nnn WWW 1                                                     (5) 

 

where Wn is a correction factor for the filter 

coefficients. The adaptive algorithm generates this 

correction factor based on the input and error signals. 

The adaptive LMS filter can be implemented by 

using MATLAB. The desired estimate is then filtered 

through a lowpass filter to remove high frequency 

noise above 60 Hz.  

The low-pass filter designed by Lynn is 

represented in simple and effective form with the 

following transfer function [12]. 
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The corresponding difference equation is as follows: 

 

(8)-4)+x(n-8)+x(n)-2x(n-1)-y(n-2)y(n)= 2y(n
 

The desired lowpass filter can be designed 

using MATLAB.After lowpass filtering the ECG 

signal is decomposed into different frequency bands 

using Filter Bank [13]. In this filter bank analysis 

technique we used 4 sub-bands; each one has 

bandwidth 6 Hz. The ECG signal is processed by 

those 4 sub-band filters and downsampled [14]. Thus 

The processing of ECG signal is carried out by using 

analysis and synthesis filters, each of length L, The 

analysis filters are bandpass filters whose ideal 

magnitude response Hn(w), n =0,1,2,…,(N-1) is 

shown in the Fig.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Ideal Magnitude response of a Filter Bank 

 

If X(f) is  the input signal then this filter 

bank decompose the input signal and produces the 

subband signals as follows: 
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The downsampling process keeps one sample out of 

samples. The downsampled signal is given as 

follows:  
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Since the downsampled signal has lower rate than 

subbands of input ECG signal the filtering process 

can be efficiently done at the input rate by taking 

advantage of the downsampling. 

With the help of these subbands interesting 

features QRS complex can be extracted by combining 
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these subbands in different ways. For example by 

using subbands 1, 2, 3 and 4 we can calculate the 

feature sum-of-absolute values, P1, as [15]: 






4

1

1 )(

k

k zZP                                                  (11) 

P1 gives the energy in the frequency band [4, 28] Hz. 

Similarly, P2 and P3 can be computed using sub-

bands {1, 2, 3}, and {2, 3, 4}, respectively as: 
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And these values are proportional to the energy in 

their respective sub-bands.  

Similarly the features mean-of-sum-of-

squares P4, P5 and P6 can be computed using 

subbands {1, 2, 3, 4}, {1, 2, 3} and {2, 3, 4}, 

respectively as: 
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These features represent the energy of the 

QRS complex. An heuristic beat detection logic can 

be developed to maximize the number of true 

positives (TP's), while keeping the number of false 

negatives (FN's) and false positives (FP's) to a 

minimum by computing the detection strength (D) of 

an incoming feature (e.g., P1, P2, P3) with the help of 

signal and noise levels as: 

NS
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D
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Where 

 S = Signal Level 

 N= Noise Level 

 

The value of D is limited at 0 if a feature's 

value is less than N and limited to 1when a feature's 

value is above S. The signal history is updated with 

the feature's value if the value of D is greater than the 

threshold and noise history is updated with the 

feature's value if the value of D is less than the 

threshold. After extracting the ECG signal with 

isolated QRS energies, the R-peaks are detected by 

simple algorithm where a dynamic threshold is used. 

 

IV. RESULTS 
In this paper first we implemented an 

adaptive filter using MATLAB built-in function and 

adaptive.lms on input noisy ECG signal to reduce 

noises that resulted from 50 Hz power lines and 

baseline drift and then filtered in a lowpass filter to 

remove high frequency noise above 60 Hz. Finally 

the ECG signal is processed with a filter bank to 

separate QRS complexes and then the R-peak 

positions from QRS complex were detected. The 

Fig.5 shows the noisy ECG signal and its spectrum, 

ECG after removing 50 Hz powerline interference 

and its spectrum.  

 
Fig. 5 ECG and its soectrum after removing 50 Hz 

powerline interfence 

  

Fig.6 shows the ECG signal after processing with a 

filter bank and R-peaks detected.  

 
Fig.6 Lowpass filtered ECG and Cleaned ECG with 

detected R-peaks 
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V. CONCLUSION 
Normally signals from ECG electrodes are 

brought to simple electrical circuits with amplifiers 

and analogue to digital converters. The main problem 

of digitalized signal is interference with other noisy 

signals like power supply network 50 Hz frequency 

and breathing muscle artifacts. These noisy elements 

have to be removed before the signal is used for next 

data processing like heart rate frequency detection. 

Digital filters and signal processing should be 

designed very effective for next real-time 

applications in embedded device. 
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